Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort.

نویسندگان

  • Fangyong Yan
  • Michael Lartey
  • Krishnan Damodaran
  • Erik Albenze
  • Robert L Thompson
  • Jihan Kim
  • Maciej Haranczyk
  • Hunaid B Nulwala
  • David R Luebke
  • Berend Smit
چکیده

Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure-property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquid properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO(2) solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO(2) capture but has application in many technological fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Thermodynamic Consistency Test of Carbon Dioxide (CO2) in Room-Temperature Ionic liquids using Generic van der Waals Equation of State

Thermodynamic consistency test of isothermal vapor-liquid equilibrium (VLE) data of various binary systems containing Carbon dioxide (CO2)/Room temperature ionic liquids (RTILs) have been investigated in wide ranges of pressures in each isotherm precisely. In this paper Generic van der Waals (GvdW) equation of state (EoS) coupled with modified van der Waals Berthelot mixing rule has ...

متن کامل

Modeling the Solubility of Acid Gases in Ionic Liquids

In this work, the PC-SAFT equation of state (EoS) has been used to model the solubility of acid gases (CO2 and H2S) in two imidazolium-based ionic liquids (ILs) ([C8-mim][PF6] and [C8-mim][Tf2N]). Parameters of pure ILs were estimated using experimental densities. Two strategies were considered to model densities of pure ILs. In strategy 1, ILs were modeled as nonassociating compounds and in st...

متن کامل

An Accurate Empirical Correlation to Estimate Sonic speed of Ionic Liquids

In recent years there has been a great deal of attention paid by researchers in investigating ionic liquids (ILs) mainly due to the tremendous potential that ionic liquids have in reaction and separation technology. Sonic speed is an important thermodynamic property of ionic liquids (ILs) and always chosen as a source to determine other properties. A database for the sonic speed of pure ILs cre...

متن کامل

Imidazolium-based Ionic liquids on Morphology and Optical Properties of ZnO Nanostructures

ZnO nanostructures have been synthesized by a simple reflux method, using different ionic liquids, such as 1-benzyl-3-methylimidazolium bromide ([BzMIM][Br]), 1,1'-(1,4 phenylenebis (methylene)) bis (3-methyl-1H-imidazol-3-ium) bromide ([MM-1,4-DBzIM2][Br]2) and 1-phenacyl-3-methylimidazolium bromide ([PMIM][Br]), with different amount of sodium hydroxide in water. Als...

متن کامل

Ionic Liquids for Carbon Dioxide capture: Absorbent Selection

Carbon dioxide (CO2) is one of the major contributors to the greenhouse effect. The power and industrial sectors combined account for about 60% of the global CO2 emissions [1]. CO2 capture and storage (CCS), which involves the processes of capture, transport and long-term storage of carbon dioxide, is a technology aimed at reducing greenhouse gas emissions from burning fossil fuels during indus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2013